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1. INTRODUCTION

The main purpose of this note is to study the problem to

which degree the scoring system of tennis matches allows the

difference in players' levels to be reflected in the result of

the match. To put it more explicitly, assume that pA and pB

are the probabilities of winning a single ball by A and by B

from their serves. Then, if the balls are played independently,

and no other factors intervene in the result, the probability of

A winning the match is some function of PA and I ' say

MA OAM A(p AP B )

The conditions of fairness require that the function MA

equals on the diagonal pA = PB and satisfies MA(pA,PB) =

1 - M A(pBPA)  If one wants the result to reflect the relative

advantage of one pldyer over anoLhr, one could require the

function MN to rise steeply from as pA increases from the

value pB The latter requirement, while desirable from the

point of view of "true" ranking of the players, may however cause

lack of tension and drama of a tennis match, by decreasing the amount

of randomness and uncertainty of the result.

In section 1, we consider the probability of winning a basic

unit of tennis match, namely a game, as a function of probability

of winning a ball. In section 2, we consider the latter probabil-

ity as'a dependent of the serving strategy, and analyse conditions

under which the usual strategy (first serve strong, second weak)

is indeed optimal. In section 3 we consider the simplest case of

strategic analysis, when a player may increase the probability of
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winning just one ball during the game. The question then

arises of optimal moment of the game at which such a special

ball ought to be played. This situation is then generalized

to the case of several "special" balls. Finally, in the last

section, we provide some numerical results concerning the

probability of winning the match by one player, given the

probabilities of winning a ball from his own, and from his

opponent's serve, thus providing some information relevant for

the answer to the question formulated at the beginning of this

section. We also give some numerical results concerning the

strategy in the last two sets in the match.

2. ON THE ROLE OF TRAINING

Let us consider first the basic unit of a tennis match,

namely a game. It is characterized by the condition that the

serve belongs to one of the players throughout the whole game,

and that for winning the game, one must win four balls, with

the additional requirement that the number of balls won must

exceed the number of balls lost by at least 2. By tradition,

the first two balls won count 15 points each, the next two count

10 points each, and subsequently, the score is classified in terms

of categories "deuce", "advantage A" and "advantage B". Thus, the

game may be regarded as a walk over the graph represented on Fig. 1.
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15030 . 030dv. dv.
x x x x

:015:15 30:30 euc euc euc
z z z

0:5v530304 dv.

Fig 1.

Let us consider the game from the point of view of Player A.

For the moment, let us disregard the problems connected with the

right to a double trial at serve, and assume that the balls are

played independently, each of them being won by A with probability

p, and lost by him with probability q = 1 - p

Our first goal will be to determine the probability G(p) of

winning the game by A , i.e. the probability that the random walk

originating at the vertex marked 0:0 will become absorbed by the

upper boundary (marked + ).

Denote by x, y and z the probabilities of winning the

game by A given the deuce (or score 30:30 ) , advantage of A

and advantage of B respectively (see Fig. 1).

Observe first that the probability of an infite game is zero.
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Indeed, an infinite game requires that the random walk passes

through all vertices marked "deuce". Now, the probability of

passing from one "deuce" to the next is 2pq < 1 , hence the

probability of the game lasting for at least n deuces is

n
~(2pq) , which tends to 0 as n ..

Next, we have

x = py + qz , y= p + qx , z px , (2.1)

which yields easily

x = p 2/Q , y = p(l - pq)/Q , z = p 3/Q , (2.2)

where Q = 1 - 2pq

From Fig. 1 it is evident that the probabilities of winning

the game by A , given the scores 40:15 and 15:40 are

p + qy and pz respectively. Proceeding in this way, we obtain

after some calculations

Proposition 1. The probability of winning the game by A is given

by the formula

4 5 6 7

2p2 - 2p + 1

The graph of G(p) is given on Figure 2. As may be seen,

G(p) is nearly linear on a fairly large central fragment of the

interval !0,1 One can find easily that G'( ) = 5/2 This

means that for players of approximately equal strength, an increase

of probability of winning a ball from p to p + Ap yields an

5increase of theprobability of winning by about 'p For example,
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an increase of winning probability from p = 0.5 to p = 0.55

yields the increase of G(p) by 0.123 from 0.5 to 0.623.

3- THE STRATEGY OF SERVING

Consider now in some more detail a node of the graph from

Fig. 1, taking into account the fact that the p]ayers have the

right to two trials at the serve. Let us assume that the player

to serve is A

A node of the graph on Fig. 1 will therefore take the form

presented on Fig. 3.

Yi2 ball
wong oo° d Y J

y good
rsirSt second l-y

ervice service -

fault ball
tal-x. lost

1-x1

Fig. 3

Now, the players may use two kinds of serve, which will be

referred to as strong (S) and weak (W). Let x. denote the

probability of a good (no fault) serve of type i ,i = S corres-

ponding toa strong serve, and i = W - to a weak . rye. Similarly,

let y, be the probability of winning the ball from a serve of

type i , qiven this serve is successful.
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The four possible strategies of serving are (SS), (SW),

(WS) and (WW) . In practice of tennis matches, the players almost

invariably use the strategy (SW) . Let us therefore determine

under which conditions this strategy is indeed the best among

the four possible strategies.

It is a plausible assumption that

x S < xW  and yS> yW ' (3.1)

i.e. strong serve is more often faulty than a weak one (it is

more difficult to hit the court with a strong serve); on the

other hand, the probability of winning the ball from a strong

serve is higher than from a weak one (a strong serve is more

difficult to return).

The probability of winning the ball, if one applies the

strategy (SW) equals

PSW = xSYS + (1 - Xs)xWyW (3.2)

and similar formulas hold for other strategies of serving.

We have therefore

PSW - PWS =IXSYS + (1 - Xs)XYwlI-XwYw + (+ - Xw)X sys]

= XsXw(Y S - yw ) > 0 , (3.3)

which means that under (3.1), if one decides to use both types

of serve, it is better to start from the strong one.

Next, we have

• - v ,. _
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PSW -SS + (1 - Xs)xwyW - s + (1 - Xs)xsYs

X )(x y x y(3.4)=(1 - x5 ) (<w~'w - XsY s).4

We conclude therefore that if

XwYW > XSY S , (3.5)

i.e., if the absolute probability of winning with the weak serve

exceeds that of winning with the strong serve, then the strategy

(SW) is better than The strategy (SS).

Observe that this conclusion did not require the use of

assumption (3.1)

Finally,

P SW - PWW xSyS + ( - Xs)xwY -I xWy w + (1 - x Wx y W.

XwYw(XW - x S) - (XY - xsys)

Y, X
: X 1 - (x - x ) (3.6)

and we proved

Proposition 2. Under condition (3.1), the strategy of

serving (SW) is optimal if, and only if

x
[1 - (x - x <) <_ < --x (3.7)

x S S YW x S

4. SOME ELEMENTS OF STRATEGY IN A GAME

Consider again a game, in which A has probability p of

winning a ball. Suppose that A may increase the probability
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p to p' > p just once during the game (e '- A has a

way of distractinci his opeornent's attention in playing one ball,

etc.). The problem arises when should the "special" ball be

played so as to maximize the probability of winning the game.

Denote by G (p,p') the probabilit - of winning the game,
S

if the "special" ball (with probability 1, of winning it)

is played according to the strategy s

Here strategy s is any rule which determines when the

special ball is to be played. If S stands for the class of

all strategies, then S may be partitioned into two classes:

S' , say, of all strategies which will necessar-ily use the special

ball, and the class S'" of those strategies for which this is not

true (e.g. the strategy which tells to use the special ball when

the score is 15:40 only, is in S" the game might end without

ever passing through the score 11):40 ).

We shall prove a somewhat unexpected

Proposition 3. The game in tennis is "strategy-less", in the

sense that

Gs(p,p') = Gt(p,p') for all s,t ' (4.1)

G s(pp') > Gt(p,p') for all s S' , t r 5" and p' > p
(4.2)

Proof. We shall proceed by finding the optimal strategy of

placing the "special" ball, using the principle of backward induc-

tion.

For the score u:v during the game, denote by P the
u:v
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probability of winning the game by A , starting from the score

u:v , without ever playing the "special" ball. Next, let P'
U:V

denote the probability of winning by A , starting from the score

u:v , if the first ball played is the "special" one. Similarly,

P11 will denote the analogous probability given that the first
U:v

ball played is a "normal" one (with probability p of success),

and from then on, the game is played in an optimal way of placing

the "special" ball. Finally,

P* = max (P' , P" v) (4.3)
U:V U:V u:

is the probability of winning the game by A under the optimal

strategy of placing the special ball, in a "pa tial game" , starting

from the score u:v

We shall try to find the value P0 The optimal strategy
0:0

will then be determined by finding those scores u:v at which

P* = P' > P" being the scores at which the "special" ball
u:v u:v u:v

must be played.

In case when P' = P" , the "special" ball may be played
U:v U:V

at u:v , or may be played later, according to optimal rules in

partial games starting from the scores next after u:v , so that

the optimal rule is not unique.

Let us begin with scores 40:30 and 30:40 , and consider

strategies s S' (i.e. strategies which use the "special" ball

with probability one).

We have, using (2.2)

p(l - pq) 3
40:30 y 1 - 2pq 30:40= z (4.4)30:40 -2p

i
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Clearly, if the special ball was not used until the score

40:30 or 30:40, it must be used at once, otherwise the strategy

would not be in S' Thus, usinq (2.2) again, wo have

40:30 40:30 deuce

2
=pI + q' -s---

I - 2pq

and

2
30:40 30:40 P'deuce P' 1- 2pq(

On the other hand,

P30:30 P'P40:30 + q'P 3 0 :4 0  (4.7)

3
p(l - pq) P

p - 2pq q1 - 2pq

and

pop pp* + qP* 48
30:30 p 40:30 +  30:40

2 2SP(p' + q p + qp' p
I -2pq I -2pq

We check easily that P3 0h3c '
30:.30 P30:30 wihmasta

P3 P0:30 (4.9)

Consequently, if the special ball was not playe& until the

score 30:30, it may be played at this score, or it may be used at

next score, i.e. at 40:30 or 30:40, whichever occurs.

Next, we have
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P40:15 1 + qP 4 0 :30 p + Cy  (4.10)

I 1. - pq)

1, + q I - 2pq

Since at 40:15 the qame may end the next ball, we have

,* -1? p' -_ q' (4.11)
40:15 40:15 p'+q 1 - 2pq

Passing now to the score 30:15, we have

P30:15 P '40:15 +  "'P30: 3 0 
= P'(P + (y) + q'x (4.12)

p (p + ( I1- - pq + q , 2

1 -2pq I - 2pq

and

P6 - P'k + qP o 3 : P(j + q'y) + i(p'y + q'z) (4.13)
30:15 40:15 30:30q

p (1 ' + I Ir)' , I' [),I)_+_ + _, 3

1 - -pq 
I - 2pq 1 -2p

Again we check eaf;ily that P'0:1 , which means that at

the score 30:15 one may either use the special ball, or use it later

(at the score 40:15, and either at 30:30, or at 40:30 and 30:4n).

Proceeding in the same way, we arrive final>' ,a the avalue

P6:0' and P"0:0 ' and check that they are equal.

This proves the property (4.1). The proporty (4.2) Ioliows

at once from the observation that if p' > p , then each strateqy

in 5" may be modified to a strategy in S' which is superior to

it. Thus, the proof of Pr- position 3 is complete.

Some tedious but elementary calculations yield

P15:0 p3 + 3p3q + 3p 22 31q 2  3(4.14)-- q y + x + pq z(.4
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and

: + p 3qy + 3p 2qx + 3p2'i z (4.15)

with x,y,z given by (2.2)

Using the assertion of Proposition 3, we conclude that for

all strategies s c S' we have G s(Pp') = P0:O , hence

Gs(Pp') = pP 1 5 0 + q'P 0 :1 5  (4.26)

= G(p) + Ap(P 1 5:0 - P0:15 )

where p' = p + 'p

Trable 1 gives probabilities G(p) and differences

P15:0 - P0:15 for selected values of p , thus enabling calcula-

tion of G (p,p') according to (4.16). For instance, at p 0.5s

TABLE 1

P G(p) P 15:0 -P0: 5

0.00 0.0000 0.0000
0.05 0.0001 0.0012

0.10 0.0014 0.0089
0.15 0.0071 0.0278
0.20 0.0218 0.0602
0.25 0.0508 0.1055
0.30 0.0992 0.1597
0.35 0.1704 0.2160
0.40 0.2643 0.2658
0.45 0.3769 0.3002
0.50 0.5000 0.3125
0.55 0.6231 0.3002
0.60 0.7357 0.2658
0.65 0.8296 0.2160
0.70 0.9008 0.1597
0.75 0.9492 0.1055
0.80 0.9782 0.0602
0.85 0.9929 0.0278
0.90 0.9986 0.0089
0.95 0.9999 0.0012



we have G(p) 0.5 anld P15:0 - P0:l1, 0.31 This means that

the increase from F, to p' = 0.55 (hnce with 'p ().05) in

just one hall durinq the g;ame, will increas the rirolbiility of

winning the game by about 0.05 x 0.31 - (.0155

Proposition 3 may be generalized as follow-.. Consider a

finite binary tree, the two branches leading out of a node marked

by 1 and 0, Assume that to each terminal node, :ay Xo':,,z...

there is associated a number, say W(x) , W() .... representin

the payoff if the game described below terminate..; on the respective

node.

For a given terminal node, say x , let ce] he2''" en

the successive marks (I or 0) assigner! to the cur;ecut i-e branches

of the (unique) path leadinq to x . et

e(x) = 01/2 + 22 + .. + e / 2 n (4.17)

Assume thit the payoffs V; are mTo:otonrI :,-creasinq with

rcspect to the function e , i.e. for any two terminal nodes >:

and y , we have

W(x) W(y) whenever o(x) e(y) (4.18)

Consider now a random walk on the tree under consideration,

in which consecutive steps are independent, and the branch marked

I is chosen with probability p (and branched marked 0 is chosen

with probability q = I - p).

The player may change the probability once durinq the whole

random walk, from (p,q) into (p',q') with p' > p . He is

to receive the reward equal to W(x) if the random walk terminates
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at node x

Consiler as betore the strategies s of cloosing the

node at which the puhcabi lit ies are to le mod if i ed , and let us

partition the class 2 of all strategies into the set ;' of

all those strito,lies w~iic+, modify th: proaji lit ir.s at some node

wi th p, ohl-ahility one, in! the remaindlor -lass ."

I,et V t he (,xi×(-c t tayoff as.f-'iat ., witi. the strategy

s We have then

Pr I)(!:; it ion 4. 'nier thl .IsSUllIl~tion . cr,: l '-''-, we ha.e

for ill F; , 4 !9)

; t ____ _- (4. >().

'lh| ' , ',h , IFO<C ' oo i ri h .-;,'lo w:,. , 1w to. ;, te!,r.: 5 : ;.

Sn. w 1 I unn t t ,,i

f, ini i 7 '. :. , I r-. '. I , , 1 ' Y- i ',o r o  t I- ,

eroe t.iil 1 t t ol jI' i r t.e oe i i f" ... v . tl. , 'o i

)I w i rn i it). Naturllil , tt.. r, .:for .1 e7" a]" at,11r5 i

the game c-dAnno(t excoe !  4, 11 ()it (r() ': ! r: I ' Cj stAte s If r.P..

'' (which Ust- all :o ,, i ii h alls with 4 I (A 111 1 1 t' I-,e). In Case of

4 special balls, the only strately i'i ;' ; to r).Is them 1s the

first four iall.s played. In the interest ing c-a,.o s of 2 in(! 3 special

balls, one his the same "strategy-less" iroperty nt the tennis gjame

as given in Proposition 3: it does r- t matter when th, special balils

are ilaye.!, ,i! lon-I as one quarantee.s t?-, uF. el :ill of ther..
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Lot tis at t '( (lt I(J125' I !(, I I I Of

tnnis, rimely the :,,t ,ind the iatch. ''tlhe j!:., 'hO I z t v ins

:: tt; W i!i t Ile mtc h, ;C that the sc:re i t La e 3:0, :1

or 3:2.

tft t.*i:2 von *,:v, V.,-! ,-in .t , ,. h,: i: he set, t, co n c--,

1, t e ! : . it ,s; ' , t o :I11'1 L. "iF t f C - Vo n

ttut, i!t the 5, ,Ye ( I:I:,. ? ' ' " ( ' ¢ i: .. ,t ' c. " ' t the

i't-. , the r ci,, 1 , , .e t V I. ., n..ins it,

wi~l., the :'1~ (..i~t tK,, .1,,, C, ,,:, ,: :C) . >.e. ru~ .m f tie-

ot ,, erv two l..: 1 - .,: ,,, ,f.,: ,, IT,, > ! v. . W' .- i Is, i:i +h the
W i I ro:.t'he t I'x t 2.cF f .

"I ';., .. ii,, ., , , .. i >I :1 t V-,tj-, c,: tl. 1,, dI- . oif t?.e. set

'0 1 f7 :-

n1v'0 . 4:
a vC, -v t ' I s I

I~ .:

t, I I.: se

42 2 0i

1:22:3 :4. 
(7 t

':3 2:43:

1:4 4

0 4
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Suppose that A and B have probabilities of winning a

single ball from one's own serve equal pA and pB P and suppose

that A is to servw' in the first game. The iules of the match

are then as follows.

(a) The fifth set (if played) is a random walk on the infinite

lattice from Fig. 4, with probabilities of going "up" equal alter-

natingly G(pA) and 1 - G(PB) , with (G ;iven by (2.9) . The set

is played until the random walk exits to a vertex marked + or

(b) In the sets other than the fifth, the situation is as

above, with the additional provision that if the random walk reaches

the node 6:6, the set ;s completed by a tiebreaker.

(c) The tiebreaker is a random walk on thAc.e lattice from

Fig. 4, except that now the transitions occur not after a game, but

after a single ball. The rules of changing the serve are such that

(assumin -T A is to serve first) , Lhe successive probabilities of

the random walk going "up" are

p , 1 - p B ' 1 B 'PA ' PA ' 1 ) B ' -pB 'P p . ...

Let t tA.PE) and ( I denote the proba-

bilities of winning a set with and without th( t ieLrcaing rule.

These probabilities 'lo not depend on the choice of first server.

Consequently, the probability of A winning t.,e match equals

M A(p PB 3  + 3!,( i )  + 6 2 (

t t t t t f

Now, the probabilities and t, as well as the proba-

bility of winning a tiebreaker, may in principlle be written down

explicitly, as function of PA and 1, in muh the same way as
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for the case of the kjanw. Table 2 provides s',,n interestinq

numerical values.

Tablr. 2

Ta ProL 0iolit f Winning by Player

(IL niae A ,Jame Set wi th 'ifth Match
t 1rom own fr(In op- Tiebreak tiebreak set

pr r ponerit 's rule(;(},, ) Sec-rve) i..t MA(PA' B )

i-ct f B
0.51 0. 0.1-)25 0.sooo 0. 5148 0.5356 0.5369 0.5670

. 1 0 ,4'1 0.5295 0.5709 0.5734 0.6321
0.5 0. 5746, 0.5442 0.6056 0.6092 0.6934
0.54 0. 59' 0 0.5589 0.6394 0.6441 0.7497
9.55 0.6231 0.5736 0.6721 0.6778 0.7997

0.6,0 0.7377 0.0455 0.P117 0.8202 0.9519

0.61 0.,n0 .75(,2 0 .204 3 0.5152 0.5 14, 5.5361 0.5644
0.P 0.7759 0.5304 0.5C75 0.5719 0.6267
n. n .7947 r.545R 0.60r 0.6069 0.6853
0.04 n .8126 ).5611 0. 2-) 0.6410 0.7391
0 . f ). 82f9 , P..5765 0.6r, 02.6739 0.7874

0.70 0.)()H08 n.6)22 0.790 0.814 0.9400
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As may be seen, the tiebreaker favours the weaker player

in the sense that he has higher chances of winning a tiebreaker

(and consequently, a set with tiebreaking rule) than the set

without the tiebreaker. The probability of winning a match

appears quite sensitive to player's advantage in winning a ball,

i.e. sensitive to the difference pA - PB

It may be shown easily that Proposition 3 applies as well

to a single set. Imagine namely that the player may increase

his chances of winning a number of games during the set (say,

only in games from his own serve). Then the probability of

winning the set does not depend on the choice of games which

are played with the increased probability of winning, as long

as the maximal allowed number of games is played in this way.

This property does not, however, carry over to the case of

a match. One may namely consider the situation when A can

increase the probability of winning a game (from his own serve,

say) from G(pA) to some larger value p', in total of k games

during the match. Then it is no longer irrelevant where the

games with probability p' of winning are placed.

The determination of the optimal strategy is not simple;

below, we give some numerical values for a special case.

For simplicity, assume that the increase in probability may

apply only to the games with player's own serve, while the proba-

bility of winning a game with the opponent's serve is 1 - G(pB).

Assume also that the increase does not apply to tiebreak.

If PA = 0.63 and pB = 0.60 , then G(p A) = 0.795 and

G(pB) = 0.736 , while the probability of winning the tiebreak by
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A equals 0.546.

Suppose that 3 sets were already played, and A is to

serve in the first game of the fourth set. Assume that he can

change the probability of winning a game from G(pA) = 0.795 to

p' = 0.9 in the total of k = 4 games in the rest of the match.

If the score in sets is 2:1 , the optimal strategy (obtained

by applying the principle of backward induction, in much the same

way as the determination of optimal strategy in the proof of

Proposition 3) is to play the games with prohalility of winning

p' in any game in the fourth set in which A is either tied, or

has the advantage, except the scores 0:0 and 1:1 . Thus A

is to use the increased probability of winning at the scores 2:0,

4:0, 3:1, 2:2, 5:1, 4:2, 3:3, 5:3, 4:4 and 5:5 , that is, the

scores marked on Fig. 4 ( A is to serve when the total of games

played is even). If he loses the fourth set, he is left with a

certain number x (0 , x < 4) games in which he can increase the

probability of winning. These he may play in the fifth set in any

way he chooses, provided he uses all available games.

Clearly, the optirral strategy here is aimed at winning the

match in four sets. The probability of winning the match, given

the score 2:1 in sets, in "normal situation" equals - + (1 - t)7fttf

= 0.8429; with optimal usage of 4 "special" games it is 0.9036.

On the other hand, if the score in sets is 1:2 , then A

should use his options at all scores in the fourth set when he is

either tied, or his opponent has an advantage, except for the scores

0:0 and 1:1 The situation is therefore symmetric, and the

optimal strategy is aimed primarily at not losing in the fourth
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set. Here the probability of winning the match in a "normal

situation equals fit'f = 0.3643 , while with optimal use of

four "special" games it is 0.4689.




